Extended Multi-objective fast messy Genetic Algorithm Solving Deception Problems
نویسندگان
چکیده
Deception problems are among the hardest problems to solve using ordinary genetic algorithms. Designed to simulate a high degree of epistasis, these deception problems imitate extremely difficult real world problems. [1]. Studies show that Bayesian optimization and explicit building block manipulation algorithms, like the fast messy genetic algorithm (fmGA), can help in solving these problems. This paper compares the results acquired from an extended multiobjective fast messy genetic algorithm (MOMGA-IIa), ordinary multiobjective fast messy genetic algorithm (MOMGA-II), multiobjective Bayesian optimization algorithm (mBOA), and the non-dominated sorting genetic algorithm-II (NSGAII) when applied to three different deception problems. The extended MOMGA-II is enhanced with a new technique exploiting the fmGA’s basis function to improve partitioned searching in both the genotype and phenotype domain. The three deceptive problems studied are: interleaved minimal deceptive problem, interleaved 5-bit trap function, and interleaved 6-bit bipolar function. The unmodified MOMGA-II, by design, explicitly learns building block linkages, a requirement if an algorithm is to solve these hard deception problems. Results using the MOMGA-IIa are excellent when compared to the non-explicit building block algorithm results of both the mBOA and NSGA-II.
منابع مشابه
Solving a New Multi-objective Inventory-Routing Problem by a Non-dominated Sorting Genetic Algorithm
This paper considers a multi-period, multi-product inventory-routing problem in a two-level supply chain consisting of a distributor and a set of customers. This problem is modeled with the aim of minimizing bi-objectives, namely the total system cost (including startup, distribution and maintenance costs) and risk-based transportation. Products are delivered to customers by some heterogeneous ...
متن کاملMessy Genetic Algorithm Based Multi-Objective Optimization 1 Messy Genetic Algorithm Based Multi-Objective Optimization: A Comparative Statistical Analysis
Many real-world scientific and engineering applications involve finding solutions to “hard” Multiobjective Optimization Problems (MOPs). Genetic Algorithms (GAs) can be extended to find acceptable MOP Pareto solutions. The intent of this discussion is to illustrate that modifications made to the Multi-Objective messy GA (MOMGA) have further improved the efficiency of the algorithm. The MOMGA is...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملSolving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective functi...
متن کاملMulti-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems
In this paper, we study the problem features that may cause a multi-objective genetic algorithm (GA) difficulty in converging to the true Pareto-optimal front. Identification of such features helps us develop difficult test problems for multi-objective optimization. Multi-objective test problems are constructed from single-objective optimization problems, thereby allowing known difficult featur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005